The economics of large-scale wind power in a carbon constrained world
نویسندگان
چکیده
The environmental impacts of fossil-fueled electricity drive interest in a cleaner electricity supply. Electricity from wind provides an alternative to conventional generation that could, in principle, be used to achieve deep reductions ð450%Þ in carbon dioxide emissions and fossil fuel use. Estimates of the average cost of generation—now roughly 4b=kWh—do not address costs arising from the spatial distribution and intermittency of wind. The greenfield analysis presented in this paper provides an economic characterization of a wind system in which long-distance electricity transmission, storage, and gas turbines are used to supplement variable wind power output to meet a time-varying load. We find that, with somewhat optimistic assumptions about the cost of wind turbines, the use of wind to serve 50% of demand adds 1–2b=kWh to the cost of electricity, a cost comparable to that of other large-scale low carbon technologies. Even when wind serves an infinitesimal fraction of demand, its intermittency imposes costs beyond the average cost of delivered wind power. Due to residual CO2 emissions, compressed air storage is surprisingly uncompetitive, and there is a tradeoff between the use of wind site diversity and storage as means of managing intermittency. r 2004 Elsevier Ltd. All rights reserved.
منابع مشابه
Security-Constrained Unit Commitment Considering Large-Scale Compressed Air Energy Storage (CAES) Integrated With Wind Power Generation
Environmental concerns and depletion of nonrenewable resources has made great interest towards renewable energy resources. Cleanness and high potential are factors that caused fast growth of wind energy. However, the stochastic nature of wind energy makes the presence of energy storage systems (ESS) in wind integrated power systems, inevitable. Due to capability of being used in large-scale sys...
متن کاملIncorporating Wind Power Generation And Demand Response into Security-Constrained Unit Commitment
Wind generation with an uncertain nature poses many challenges in grid integration and secure operation of power system. One of these operation problems is the unit commitment. Demand Response (DR) can be defined as the changes in electric usage by end-use customers from their normal consumption patterns in response to the changes in the price of electricity over time. Further, DR can be also d...
متن کاملHow Does Large-scale Wind Power Generation Affect Energy and Reserve Prices?
Intermittent nature of wind power faced ISO and power producers with new challenges. Wind power uncertainty has increased the required reserve capacity and deployment reserve. Consequently, large-scale wind power generation increases ISO costs and consequently reserve prices. On the other hand, since wind power producers are price taker, large-scale wind power generation decreases residual dema...
متن کاملGeneration Scheduling in Large-Scale Power Systems with Wind Farms Using MICA
The growth in demand for electric power and the rapid increase in fuel costs, in whole of theworld need to discover new energy resources for electricity production. Among of the nonconventionalresources, wind and solar energy, is known as the most promising deviceselectricity production in the future. In this thesis, we study follows to long-term generationscheduling of power systems in the pre...
متن کاملMulti Objective Scheduling of Utility-scale Energy Storages and Demand Response Programs Portfolio for Grid Integration of Wind Power
Increasing the penetration of variable wind generation in power systems has created some new challenges in the power system operation. In such a situation, the inclusion of flexible resources which have the potential of facilitating wind power integration is necessary. Demand response (DR) programs and emerging utility-scale energy storages (ESs) are known as two powerful flexible tools that ca...
متن کامل